skip to main content


Search for: All records

Creators/Authors contains: "Yang, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cas Cremers and Engin Kirda (Ed.)
    Vector Oblivious Linear Evaluation (VOLE) supports fast and scalable interactive Zero-Knowledge (ZK) proofs. Despite recent improvements to VOLE-based ZK, compiling proof statements to a control-flow oblivious form (e.g., a circuit) continues to lead to expensive proofs. One useful setting where this inefficiency stands out is when the statement is a disjunction of clauses $\mathcal{L}_1 \lor \cdots \lor \mathcal{L}_B$. Typically, ZK requires paying the price to handle all $B$ branches. Prior works have shown how to avoid this price in communication, but not in computation. Our main result, $\mathsf{Batchman}$, is asymptotically and concretely efficient VOLE-based ZK for batched disjunctions, i.e. statements containing $R$ repetitions of the same disjunction. This is crucial for, e.g., emulating CPU steps in ZK. Our prover and verifier complexity is only $\bigO(RB+R|\C|+B|\C|)$, where $|\C|$ is the maximum circuit size of the $B$ branches. Prior works' computation scales in $RB|\C|$. For non-batched disjunctions, we also construct a VOLE-based ZK protocol, $\mathsf{Robin}$, which is (only) communication efficient. For small fields and for statistical security parameter $\lambda$, this protocol's communication improves over the previous state of the art ($\mathsf{Mac'n'Cheese}$, Baum et al., CRYPTO'21) by up to factor $\lambda$. Our implementation outperforms prior state of the art. E.g., we achieve up to $6\times$ improvement over $\mathsf{Mac'n'Cheese}$ (Boolean, single disjunction), and for arithmetic batched disjunctions our experiments show we improve over $\mathsf{QuickSilver}$ (Yang et al., CCS'21) by up to $70\times$ and over $\mathsf{AntMan}$ (Weng et al., CCS'22) by up to $36\times$. 
    more » « less
    Free, publicly-accessible full text available November 30, 2024
  2. Abstract The first line of treatment for most solid tumors is surgical resection of the primary tumor with adequate negative margins. Incomplete tumor resections with positive margins account for over 75% of local recurrences and the development of distant metastases. In cases of oral cavity squamous cell carcinoma (OSCC), the rate of successful tumor removal with adequate margins is just 50–75%. Advanced real‐time imaging methods that improve the detection of tumor margins can help improve success rates,overall safety, and reduce the cost. Fluorescence imaging in the second near‐infrared (NIR‐II) window has the potential to revolutionize the field due to its high spatial resolution, low background signal, and deep tissue penetration properties, but NIR‐II dyes with adequate in vivo performance and safety profiles are scarce. A novel NIR‐II fluorophore, XW‐03‐66, with a fluorescence quantum yield (QY) of 6.0% in aqueous media is reported. XW‐03‐66 self‐assembles into nanoparticles (≈80 nm) and has a systemic circulation half‐life ( t 1/2 ) of 11.3 h. In mouse models of human papillomavirus (HPV)+ and HPV‐ OSCC, XW‐03‐66 outperformed indocyanine green (ICG), a clinically available NIR dye, and enabled intraoperative NIR‐II image‐guided resection of the tumor and adjacent draining lymph node with negative margins. In vitro and in vivo toxicity assessments revealed minimal safety concerns for in vivo applications. 
    more » « less
  3. null (Ed.)
  4. Abstract

    Design of nucleic acid-based viral diagnostics typically follows heuristic rules and, to contend with viral variation, focuses on a genome’s conserved regions. A design process could, instead, directly optimize diagnostic effectiveness using a learned model of sensitivity for targets and their variants. Toward that goal, we screen 19,209 diagnostic–target pairs, concentrated on CRISPR-based diagnostics, and train a deep neural network to accurately predict diagnostic readout. We join this model with combinatorial optimization to maximize sensitivity over the full spectrum of a virus’s genomic variation. We introduce Activity-informed Design with All-inclusive Patrolling of Targets (ADAPT), a system for automated design, and use it to design diagnostics for 1,933 vertebrate-infecting viral species within 2 hours for most species and within 24 hours for all but three. We experimentally show that ADAPT’s designs are sensitive and specific to the lineage level and permit lower limits of detection, across a virus’s variation, than the outputs of standard design techniques. Our strategy could facilitate a proactive resource of assays for detecting pathogens.

     
    more » « less
  5. null (Ed.)
    Communication during touch provides a seamless and natural way of interaction between humans and ambient intelligence. Current techniques that couple wireless transmission with touch detection suffer from the problem of selectivity and security, i.e., they cannot ensure communication only through direct touch and not through close proximity. We present  BodyWire-HCI , which utilizes the human body as a wire-like communication channel, to enable human–computer interaction, that for the first time, demonstrates selective and physically secure communication strictly during touch. The signal leakage out of the body is minimized by utilizing a novel, low frequency Electro-QuasiStatic Human Body Communication (EQS-HBC) technique that enables interaction strictly when there is a conductive communication path between the transmitter and receiver through the human body. Design techniques such as capacitive termination and voltage mode operation are used to minimize the human body channel loss to operate at low frequencies and enable EQS-HBC. The demonstrations highlight the impact of  BodyWire-HCI in enabling new human–machine interaction modalities for variety of application scenarios such as secure authentication (e.g., opening a door and pairing a smart device) and information exchange (e.g., payment, image, medical data, and personal profile transfer) through touch (https://www.youtube.com/watch?v=Uwrig2XQIH8). 
    more » « less
  6. null (Ed.)
    The advent of 3D digital printers has led to the evolution of realistic anatomical organ shaped structures that are being currently used as experimental models for rehearsing and preparing complex surgical procedures by clinicians. However, the actual material properties are still far from being ideal, which necessitates the need to develop new materials and processing techniques for the next generation of 3D printers optimized for clinical applications. Recently, the voxelated soft matter technique has been introduced to provide a much broader range of materials and a profile much more like the actual organ that can be designed and fabricated voxel by voxel with high precision. For the practical applications of 3D voxelated materials, it is crucial to develop the novel high precision material manufacturing and characterization technique to control the mechanical properties that can be difficult using the conventional methods due to the complexity and the size of the combination of materials. Here we propose the non-destructive ultrasound effective density and bulk modulus imaging to evaluate 3D voxelated materials printed by J750 Digital Anatomy 3D Printer of Stratasys. Our method provides the design map of voxelated materials and substantially broadens the applications of 3D digital printing in the clinical research area. 
    more » « less
  7. null (Ed.)
    Applications such as secure authentication, remote health monitoring require secure, low power communication between devices around the body. Radio wave communication protocols, such as Bluetooth, suffer from the problem of signal leakage and high power requirement. Electro Quasistatic Human Body Communication (EQS-UBC) is the ideal alternative as it confines the signal within the body and also operates at order of magnitude lower power. In this paper, we design a secure HBC SoC node, which uses EQS-UBC for physical security and an AES-256 core for mathematical security. The SoC consumes 415nW power with an active power of 108nW for a data rate of 1kbps, sufficient for authentication and remote monitoring applications. This translates to 100x improvement in power consumption compared to state-of-the-art HBC implementations while providing physical security for the first time. 
    more » « less
  8. The protein p53 is a crucial tumor suppressor, often called “the guardian of the genome”; however, mutations transform p53 into a powerful cancer promoter. The oncogenic capacity of mutant p53 has been ascribed to enhanced propensity to fibrillize and recruit other cancer fighting proteins in the fibrils, yet the pathways of fibril nucleation and growth remain obscure. Here, we combine immunofluorescence three-dimensional confocal microscopy of human breast cancer cells with light scattering and transmission electron microscopy of solutions of the purified protein and molecular simulations to illuminate the mechanisms of phase transformations across multiple length scales, from cellular to molecular. We report that the p53 mutant R248Q (R, arginine; Q, glutamine) forms, both in cancer cells and in solutions, a condensate with unique properties, mesoscopic protein-rich clusters. The clusters dramatically diverge from other protein condensates. The cluster sizes are decoupled from the total cluster population volume and independent of the p53 concentration and the solution concentration at equilibrium with the clusters varies. We demonstrate that the clusters carry out a crucial biological function: they host and facilitate the nucleation of amyloid fibrils. We demonstrate that the p53 clusters are driven by structural destabilization of the core domain and not by interactions of its extensive unstructured region, in contradistinction to the dense liquids typical of disordered and partially disordered proteins. Two-step nucleation of mutant p53 amyloids suggests means to control fibrillization and the associated pathologies through modifying the cluster characteristics. Our findings exemplify interactions between distinct protein phases that activate complex physicochemical mechanisms operating in biological systems.

     
    more » « less